209 research outputs found

    Numerical study of magneto-convective heat and mass transfer from inclined surface with Soret diffusion and heat generation effects : a model for ocean magnetohydrodynamics energy generator fluid dynamics

    Get PDF
    A mathematical model is developed for steady state magnetohydrodynamic (MHD) heat and mass transfer flow along an inclined surface in an ocean MHD energy generator device with heat generation and thermo-diffusive (Soret) effects. The governing equations are transformed into nonlinear ordinary differential equations with appropriate similarity variables. The emerging two-point boundary value problem is shown to depend on six dimensionless thermophysical parameters - magnetic parameter, Grashof number, Prandtl number, modified Prandtl number, heat source parameter and Soret number in addition to plate inclination. Numerical solutions are obtained for the nonlinear coupled ordinary differential equations for momentum, energy and salinity (species) conservation, numerically, using the Nachtsheim-Swigert shooting iteration technique in conjunction with the Runge- Kutta sixth order iteration scheme. Validation is achieved with Nakamura’s implicit finite difference method. Further verification is obtained via the semi-numerical Homotopy analysis method (HAM). With an increase in magnetic parameter, skin friction is depressed whereas it generally increases with heat source parameter. Salinity magnitudes are significantly reduced with increasing heat source parameter. Temperature gradient is decreased with Prandtl number and salinity gradient (mass transfer rate) is also reduced with modified Prandtl number. Furthermore, the flow is decelerated with increasing plate inclinations and temperature also depressed with increasing thermal Grashof number

    Unsteady nonlinear magnetohydrodynamic micropolar transport phenomena with hall and ion-slip current effects : numerical study

    Get PDF
    Unsteady viscous two-dimensional magnetohydrodynamic micropolar flow, heat and mass transfer from an infinite vertical surface with Hall and Ion-slip currents is investigated theoretically and numerically. The simulation presented is motivated by electro-conductive polymer (ECP) materials processing in which multiple electromagnetic effects arise. The primitive boundary layer conservation equations are transformed into a non-similar system of coupled non-dimensional momentum, angular momentum, energy and concentration equations, with appropriate boundary conditions. The resulting two-point boundary value problem is solved numerically by an exceptionally stable and welltested implicit finite difference technique. A stability analysis is included for restrictions of the implicit finite difference method (FDM) employed. Validation with a Galerkin finite element method (FEM) technique is included. The influence of various parameters is presented graphically on primary and secondary shear stress, Nusselt number, Sherwood number and wall couple stress. Secondary (cross flow) shear stress is strongly enhanced with greater magnetic parameter (Hartmann number) and micropolar wall couple stress is also weakl y enhanced for small time values with Hartmann number. Increasing thermo-diffusive Soret number suppresses both Nusselt and Sherwood numbers whereas it elevates both primary and secondary shear stress and at larger time values also increases the couple stress. Secondary shear stress is strongly boosted with Hall parameter. Ion slip effect induces a weak modification in primary and secondary shear stress distributions. The present study is relevant to electroconductive non-Newtonian (magnetic polymer) materials processing systems

    B-spline collocation simulation of non-linear transient magnetic nanobio-tribological squeeze-film flow

    Get PDF
    A mathematical model is presented for magnetized nanofluid bio-tribological squeeze film flow between two approaching disks. The nanofluid comprises a suspension of metal oxide nanoparticles with an electrically-conducting base fluid, making the nano-suspension responsive to applied magnetic field. The governing viscous momentum, heat and species (nano-particle) conservation equations are normalized with appropriate transformations which renders the original coupled, nonlinear partial differential equation system into a more amenable ordinary differential boundary value problem. The emerging model is shown to be controlled by a number of parameters, viz nanoparticle volume fraction, squeeze number, Hartmann magnetic body force number, disk surface transpiration parameter, Brownian motion parameter, thermophoretic parameter, Prandtl number and Lewis number. Computations are conducted with a B-spline collocation numerical method. Validation with previous homotopy solutions is included. The numerical spline algorithm is shown to achieve excellent convergence and stability in nonlinear bio-tribological boundary value problems. The interaction of heat and mass transfer with nanofluid velocity characteristics is explored. In particular smaller nanoparticle (high Brownian motion parameter) suspensions are studied. The study is relevant to enhanced lubrication performance in novel bio-sensors and intelligent knee joint (orthopaedic) systems

    Numerical solution of bio-nano-convection transport from a horizontal plate with blowing and multiple slip effects

    Get PDF
    In this paper, a new bio-nano-transport model is presented. The effects of first and second order velocity slips, thermal slip, mass slip, and gyro-tactic (torque-responsive) microorganism slip of bioconvectivenanofluid flow from amoving plate under blowing phenomenon are numerically examined. The flow model is expressed by partial differential equations which areconverted to a similar boundary value problem bysimilarity transformations. The boundary value problem is converted to a system of nonlinear equationswhich are then solved by a Matlab nonlinear equation solver fsolveintegrated with a Matlab ODEsolverode15s. The effects of selected control parameters (first order slip, second order slip, thermal slip, microorganism slip, blowing, nanofluid parameters) on the non-dimensional velocity, temperature, nanoparticle volume fraction, density ofmotile micro-organism, skin friction coefficient, heat transfer rate, mass flux of nanoparticles andmass fluxof microorganismsare analyzed. Our analysis reveals that a higher blowing parameter enhances micro-organism propulsion, flow velocityand nano-particle concentration, and increases the associated boundary layerthicknesses. A higher wall slip parameter enhances mass transfer and accelerates the flow. The MATLAB computations have been rigorously validated with the second-order accurate finite difference Nakamura tri-diagonal method.The current study is relevant to microbial fuel cell technologies which combine nanofluid transport, bioconvection phenomena and furthermore finds applications in nano-biomaterials sheetprocessing systems

    Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium duct

    Get PDF
    Biologically-inspired propulsion systems are currently receiving significant interest in the aerospace sector. Since many spacecraft propulsion systems operate at high temperatures, thermal radiation is important as a mode of heat transfer. Motivated by these developments, in the present article, the influence of nonlinear thermal radiation (via the Rosseland diffusion flux model) has been studied on the laminar, incompressible, dissipative EMHD (Electro-magneto-hydrodynamic) peristaltic propulsive flow of a non-Newtonian (Jefferys viscoelastic) dusty fluid containing solid particles through a porous planar channel. The fluid is electrically-conducting and a constant static magnetic field is applied transverse to the flow direction (channel walls). Slip effects are also included. Magnetic induction effects are neglected. The mathematical formulation is based on continuity, momentum and energy equations with appropriate boundary conditions, which are simplified by neglecting the inertial forces and taking the long wavelength and lubrication approximations. The boundary value problem is then rendered non-dimensional with appropriate variables and the resulting system of reduced ordinary differential equations is solved analytically. The impact of various emerging parameters dictating the non-Newtonian propulsive flow i.e. Prandtl number, radiation parameter, Hartmann number, permeability parameter, Eckert number, particle volume fraction, electric field and slip parameter are depicted graphically. Increasing particle volume fraction is observed to suppress temperature magnitudes. Furthermore the computations demonstrate that an increase in particle volume fraction reduces the pumping rate in retrograde pumping region whereas it causes the opposite effect in the co-pumping region. The trapping mechanism is also visualized with the aid of streamline contour plots. Increasing thermal radiation elevates temperatures. Increasing Hartmann (magnetic body force) number decreases the size of the trapping bolus whereas the quantity of the does not effected. Conversely increasing particle volume fraction reduces the magnitude of the trapping bolus whereas the number of trapped bolus remains constant

    Swimming dynamics of a micro-organism in a couple stress fluid : a rheological model of embryological hydrodynamic propulsion

    Get PDF
    Mathematical simulations of embryological fluid dynamics are fundamental to improving clinical understanding of the intricate mechanisms underlying sperm locomotion. The strongly rheological nature of reproductive fluids has been established for a number of decades. Complimentary to clinical studies, mathematical models of reproductive hydrodynamics provide a deeper understanding of the intricate mechanisms involved in spermatozoa locomotion which can be of immense benefit in clarifying fertilization processes. Although numerous non-Newtonian studies of spermatozoa swimming dynamics in non-Newtonian media have been communicated, very few have addressed the micro-structural characteristics of embryological media. This family of micro-continuum models include Eringen’s micro-stretch theory, Eringen’s microfluid and micropolar constructs and V.K. Stokes’ couple-stress fluid model, all developed in the 1960s. In the present paper we implement the last of these models to examine the problem of micro-organism (spermatozoa) swimming at low Reynolds number in a homogenous embryological fluid medium with couple stress effects. The micro-organism is modeled as with Taylor’s classical approach, as an infinite flexible sheet on whose surface waves of lateral displacement are propagated. The swimming speed of the sheet and rate of work done by it are determined as function of the parameters of orbit and the couple stress fluid parameter (α). The perturbation solutions are validated with a Nakamura finite difference algorithm. The perturbation solutions reveal that the normal beat pattern is effective for both couple stress and Newtonian fluids only when the amplitude of stretching wave is small. The swimming speed is observed to decrease with couple stress fluid parameter tending to its Newtonian limit as alpha tends to infinity. However the rate of work done by the sheet decreases with α and approaches asymptotically to its Newtonian value. The present solutions also provide a good benchmark for more advanced numerical simulations of micro-organism swimming in couple-stress rheological biofluids

    Computational analysis of viscous dissipation and joule-heating effects on non-Darcy MHD natural convection flow from a horizontal cylinder in porous media with internal heat generation

    Get PDF
    In the present paper we examine the effects of viscous dissipation, Joule heating and heat source/sink on non-Darcy MHD natural convection heat transfer flow over permeable horizontal circular cylinder in a porous medium. The boundary layer equations, which are parabolic in nature, are normalized into non-similar form and then solved numerically with the well-tested, efficient, implicit, stable Keller-box finite difference scheme. A parametric study illustrating the influence of Darcy parameter (Da), Forchheimer parameter (Λ), Grashof number(Gr), heat source/sink parameter (Ω) and viscous dissipation parameter (Ec) on the fluid velocity, temperature as well as local skin-friction and Nusselt numbers is conducted Increasing Forchheimer inertial drag parameter (Λ) retards the flow considerably but enhances temperatures. Increasing viscous dissipation parameter(Ec) is found to elevate velocities i.e. accelerate the flow and increase temperatures. Increasing heat source/sink parameter (Ω) is found to elevate velocities and increase temperatures. Increasing the Grashof number (Gr) is found to elevate the velocity and decrease the temperatures. Local skin friction number is found to be increases with increasing heat source/sink parameter (Ω) where as Local Nusselt number is found to decrease with increasing heat source/sink parameter (Ω)

    Modeling magnetic nanopolymer flow with induction and nanoparticle solid volume fraction effects : solar magnetic nanopolymer fabrication simulation

    Get PDF
    A mathematical model is presented for the nonlinear steady, forced convection, hydromagnetic flow of electro-conductive magnetic nano-polymer with magnetic induction effects included. The transformed two-parameter, non-dimensional governing partial differential equations for mass, momentum, magnetic induction and heat conservation are solved with the local non-similarity method (LNM) subject to appropriate boundary conditions. Keller’s implicit finite difference “box” method (KBM) is used to validate solutions. Computations for four different nanoparticles and three different base fluids are included. Silver nanoparticles in combination with various base fluids enhance temperatures and induced magnetic field and accelerate the flow. An elevation in magnetic body force number decelerates the flow whereas an increase in magnetic Prandtl number elevates the magnetic induction. Furthermore, increasing nanoparticle solid volume fraction is found to substantially boost temperatures. Applications of the study arise in advanced magnetic solar nano-materials (fluids) processing technologies

    Peristaltic flow and hydrodynamic dispersion of a reactive micropolar fluid-simulation of chemical effects in the digestive process

    Get PDF
    The hydrodynamic dispersion of a solute in peristaltic flow of a reactive incompressible micropolar biofluid is studied as a model of chyme transport in the human intestinal system with wall effects. The long wavelength approximation, Taylor's limiting condition and dynamic boundary conditions at the flexible walls are used to obtain the average effective dispersion coefficient in the presence of combined homogeneous and heterogeneous chemical reactions. The effects of various pertinent parameters on the effective dispersion coefficient are discussed. It is observed that average effective dispersion coefficient increases with amplitude ratio which implies that dispersion is enhanced in the presence of peristalsis. Furthermore average effective dispersion coefficient is also elevated with the micropolar rheological and wall parameters. Conversely dispersion is found to decrease with cross viscosity coefficient, homogeneous and heterogeneous chemical reaction rates. The present simulations provide an important benchmark for future chemo-fluid-structure interaction computational models

    Numerical study of heat transfer and viscous flow in a dual rotating extendable disk system with a non-Fourier heat flux model

    Get PDF
    Nonlinear, steady-state, viscous flow and heat transfer between two stretchable rotating disks spinning at dissimilar velocities is studied with a non-Fourier heat flux model. A non-deformable porous medium is intercalated between the disks and the Darcy model is employed to simulate matrix impedance. The conservation equations are formulated in a cylindrical coordinate system and via the Von Karman transformations are rendered into a system of coupled, nonlinear ordinary differential equations. The emerging boundary value problem is controlled by number of dimensionless dimensionless parameters i.e. Prandtl number, upper disk stretching, lower disk stretching, permeability, non-Fourier thermal relaxation and relative rotation rate parameters. A perturbation solution is developed and the impact of selected parameters on radial and tangential velocity components, temperature, pressure, lower disk radial and tangential skin friction components and surface heat transfer rate are visualized graphically. Validation of solutions with the homotopy analysis method is included. Extensive interpretation of the results is presented which are relevant to to rotating disk bioreactors in chemical engineering
    • …
    corecore